برای دانلود این مقاله کامل از زیر اقدام به خرید آنلاین نمائید.

در پایان خرید ، لینک دانلود فایل نمایش داده می شود و به ایمیل شما نیز ارسال خواهد شد. آموزش تصویری خرید آنلاین
4000 تومان خريد

 

 

فهرست مطالب

عایق صوتی ۵
نگاه اجمالی ۵
تاریخچه ۵
تولید صوت ۵
انتشار صوت ۶
ارتباط صوت و ارتعاش ۶
آیا فقط آزمایشهای مربوط به هوا وسیله انتقال صوت است؟ ۷
نقش شیشه های چند جداره به عنوان عایق صوتی ۷
آکوستیک و عایق صوتی اتاق ۸
انعکاس صوت در یک اتاق ۱۰
انعکاسهای متوالی ۱۱
چگونه به هدف خود نزدیک تر شویم؟ ۱۹
Damping یا خفه کردن صدا ۱۹
عایق های حرارتی ۲۰
عایقهای حرارتی بر پایه مواد معدنی Mineral Insulation 20
پشم شیشه (GLASS WOOL) 21
پشم سنگ ۲۲
مزایا ۲۵
معایب: ۲۶
کاربرد: ۲۷
پشم سرباره (SLAG WOOL) 27
عایقهای سیلیکات ۲۹
Calcium silicate سیلیکات کلسیم ۲۹
سیلیکات آلومینیوم ۳۱
الیاف کربنی carbon_fiber 32
تولید الیاف کربن از پیش زمینه پلی اکریلونیتریل ۳۲
ساختار الیاف کربن ۳۳
الیاف گرافیتی Graphite fiber 35
الیاف شیشه glass fiber 38
شیشه سلولی Cellular glass 39
الیاف سرامیکی نسوز( ceramic fiber) 40
معرفی الیاف سرامیکی ۴۱
خصوصیات و ویژگی های الیاف سرامیکی ۴۲
الیاف فله Ceramic fiber bulk 42
پتوی سرامیکی Ceramic Blanket 42
الیاف آزبستی ۴۳
اتیلن – پروپیلن- داین-منومر ۴۴
اسفنج پلی استایرن polystyrene foam 46
پلی استایرن منبسط شده (فوم پلی استایرن ,پلاستو فوم یا یونیلیت) ۴۶
پلی استایرن منبسط شده: ۴۷
مزایا ۴۸
معایب ۴۸
اسفنج پلی یورتان POLYURETHANE FOAM 50
فوم pvc یا فوم پلی وینیل کلراید Expanded polyvinyl chloride 52
اسفنج پلی اتلین(پلی فوم) Polyethylene foam 53
اسفنج فنولیک Phenolik foam 53
اسفنج اوره فرم آلدئید Urea formaldehyde foam 55
عایق دیاتومه ای ( diatomaceous insulation ) 56
عایق سلولزی: (cellulose insulation) 57
پشم چوب(wood wool) 60
پنجره دو جداره با قاب uPVC 62
بتن گازی(سلولی , متخلخل) ( Cellular,Gas,Aerated concrete ) 66
خواص بتن سلولی ۶۷
پرلیت منبسط, پرلیت Expanded perlit, perlit 69
پرلیت منبسط شده: ۷۰
کاربرد پرلیت در صنعت ساختمان: ۷۲
کاربرد پرلیت در بتن پاشی(شات کریت): ۷۳
کاربرد پرلیت در عایق حرارتی: ۷۳
کف های شناور: ۷۴
مزایای کلی مصالح سبک پرلیتی: ۷۵
ورمیکس: ۷۹
رس منبسط ( expanded clay) – لیکا (LECA) 80
LECA-light expanded clay aggregate 80
ویژگی ها و مزایای دانه های لیکا: ۸۰
وزن کم ۸۰
عایق حرارتی ۸۱
عایق صوتی ۸۲
نانو عایق ها NANSULATE 83
عایق کاری دینامیکی ۸۶
عایق کاری ساختمان بوسیله قیر ۸۷
استاندارد عایق کاری ساختمان بوسیله قیر ۸۸

 

عایق صوتی
نگاه اجمالی
کسی که از مباحث علم فیزیک اطلاع داشته باشد، می‌داند که موضوع ارتعاش و موج در اغلب مباحث فیزیک و مکانیک یا بطور مستقیم وارد است یا وسیله و ابزاری برای استدلال و فهم موضوعات دیگر است. اگر گفته شود که: بدون اطلاع از خواص ارتعاشات تحصیل علم فیزیک و مکانیک کلاسیک غیر ممکن است شاید سخنی به اغراق گفته نشده است. اما موضوع ارتعاشات و فیزیک امواج مخصوص نور و صوت اهمیت اساسی دارند، زیرا در حقیقت موضوع قسمتهای عمده و مختلف این دو علم جستجو در خواص ارتعاش و موج چیز دیگری نیستند.
تاریخچه
زندگی پر از صداست و ما همیشه طالب شنیدن صداهای خوش و حیاتی هستیم و از صداهای نامطبوع و خطرناک گریزانیم. بطور کلی باید گفت که هر چه پیش می‌رویم، بشر نسبت به حس شنوایی بیشتر توجه پیدا می‌کند. پیشرفت روز افزون صنایع صوت از قبیل: تلفن ، رادیو ، فونوگراف ، ضبط صوت روی فیلم و تهیه فیلمهای صدا دار و غیره خود می‌تواند بر این موضوع دلیلی مسلم باشد. از نظر اهمیتی که آکوستیک یا علم صدا دارا می‌باشد می‌توان انتظار داشت که این موضوع در تاریخ علوم فیزیک جزء مطالب اساسی به شمار رفته باشد، در صورتی که چنین چیزی نیست، زیرا در قبال تاریخ سایر علوم ، تاریخ آکوستیک قسمت از قلم افتاده و مهجوری بیش نیست. یکی از دلایل این مهجوریت تاریخی این است که نظریه اساسی اصلی راجع به انتشار و اخذ صوت از زمانهای بسیار قدیم در تحولات فکر بشری پیدا شده و اسلوب این فکر همان است که امروزه مورد قبول ماست. قسمتهای عمده علم آکوستیک عبارتند از:
تولید صوت
وقتی که به یک جسم جامد ضربه وارد می‌سازیم، تولید صدا می‌کند. تحت بعضی از شرایط صدای حاصل ، بگوش انسان خوش آیند و مطبوع است و این در واقع اساس پیدایش علم موسیقی است که سالیان دراز قبل از تاریخ ضبط صوت ، موجود بوده است، اما موسیقی ، قرنها قبل از نظر علمی مورد تحقیق قرار گرفته ، جزء صنایع ظریفه محسوب می‌گردید. این مطلب مورد قبول عموم است که اولین فیلسوف یونانی که مبنای موسیقی را برسی نموده است فیثاغورث می‌باشد که ۶ قرن قبل از میلاد زندگی می‌کرده است.
انتشار صوت
از مشاهداتی که در قدیم الایام شد و بدست ما رسیده ، معلوم می‌شود که صوت بوسیله آزمایشهای مربوط به هوا از یک نقطه به نقطه دیگر منتقل می‌گردد. در حقیقت ارسطو اصرار داشت که حرکت آزمایشهای مربوط به هوا در نقل و انتقالات صوت موثر است، ولی این موضوع مانند سایر مطالبی که در فیزیک بیان نموده است همراه با ابهام است. چون در موقع انتقال صوت ، آزمایشهای مربوط به هوا حرکتی نمی‌کند، بنابراین جای تعجب نیست که بگوییم که فلاسفه دیگر معاصر ارسطو این عقیده او را تکذیب نمودند.
به همین ترتیب در زمان گالیله ، یک فیلسوف فرانسوی گاساندی (Gassandi) ، انتشار صوت را جریانی از اجزا کوچک غیر مرئی بسیار ریز می‌دانست که از جسم صدا دار برخاسته و پس از عبور از آزمایشهای مربوط به هوا به گوش ما رسیده و آنرا متأثر می‌سازد. اولین کسی که تجربه زنگ زیر سرپوش خالی از آزمایشهای مربوط به هوا را امتحان کرد، آتانازیرس کیرثر (Jesuit Athanasuis Kircher) می‌باشد.
از ابتدای تاریخ آکوستیک تا به امروز ، تنها گیرنده صوتی مفید و جالب توجهی که دائما بکار رفته عبارت از گوش انسان می‌باشد. از اینرو قسمت عمده موضوع اخذ صوت به مطالعه و بررسی خواص آکوستیکی این عضو انحصار یافته است. جالب توجه این است که تا بحال یک نظریه کامل و قابل قبولی راجع به کیفیت شنوایی پیدا نشده است و موضوع شنوایی انسان یکی از مسایل پیچیده و گیج کننده علم جدید پیسکو فیزیک (Psycho Physics) می‌باشد.
ارتباط صوت و ارتعاش
تجربیات روزانه نشان می‌دهد که احساس شنیدن وقتی برای ما پیدا می‌شود که شی که در مجاورت ما واقع شده است به ارتعاش در آید. مثلا اگر پهلوی ما جامی فلزی قرار داشته باشد، چنانچه با یک قطعه فلز به بدنه جام بزنیم صدایی از آن به گوش می‌رسد و اگر با دقت به آن نگاه کنیم ملاحظه می‌گردد که در حین صدا دادن لبه جام غیر واضح می‌باشد و این علامت ارتعاش سریع است. اگر در این هنگام پاندول سبک وزن ساده‌ای را به بدنه جام نزدیک کنیم ضربه‌های پشت سر هم بدنه جام را روی پاندول که دلیل ارتعاش آن است بخوبی مشاهده می‌کنیم. اما بعضی اوقات ارتعاش به اندازه‌ای سریع است که با چشم دیده نمی‌شود و باید با وسایل مختلف از قبیل وسیله فوق وجود آنرا در اجسام ظاهر ساخت.
آیا فقط آزمایشهای مربوط به هوا وسیله انتقال صوت است؟
علاوه بر آزمایشهای مربوط به هوا جامدات و مایعات نیز برای صوت ناقل خوبی هستند. هر کس می‌داند که با گذاشتن گوش خود به زمین می‌تواند حرکت عابرین پیاده و چهارپایان را از مسافت نسبتا زیادی بشنود. همچنین اگر گوش خود را به ریل راه ‌آهن بچسبانیم حرکت قطار را ممکن است از چندین کیلومتر بشنویم. خاصیت انتقال صوت در جامدات و مایعات قویتر از خاصیت مزبور در گازها می‌باشد.
اغلب دیده‌ایم که با وجودی که پهلوی ریل راه ‌آهن ایستاده‌ایم ، صدای حرکت قطاری را که دور از ما واقع شده است نمی‌شنویم و اگر بخواهیم صدای حرکت قطار مزبور را بشنویم یا باید گوش خود را به ریل بچسبانیم و یا اینکه یک سر میله چوبی و یا فلزی را به ریل چسبانده و سر دیگر را روی گوش خود بگذاریم، طوریکه در هر دو حالت استخوان خارجی گوش به ارتعاش در آید. به همین دلیل است که دیاپازون را روی جعبه مخصوص قرار می‌دهند تا صدایش قوی شود.
نقش شیشه های چند جداره به عنوان عایق صوتی

در دنیای امروز آلودگی صوتی بخش عمده ای از مشکلات زندگی در شهرهای بزرگ به شمار می رود و اثرات زیان آور آن در واکنشهای اجتماعی و سلامتی شهروندان قابل مشاهده است.
بلندی یک صوت با اندازه گیری انرژی امواجی که این صوت تولید میکند قابل اندازه گیری است ٬ این انرژی که به آن شدت صوت گفته میشود با واحدی بنام دسی بل (db) سنجش میشود. آستانه شنوایی برای گوش انسان صفر دسی بل و شدت صوت ۱۲۰ دسی بل بیانگر شدتی است که درد برای گوش قابل احساس است .
سطوح شدت قابل قبول برای مکانهای مختلف به شرح ذیل است:
بیمارستانها ۲۰ الی ۲۵ ٬ اماکن مسکونی ۳۰ الی ۴۵ ٬ مدارس ۳۵ الی ۴۰ ٬ و ادارات ۴۰ الی ۵۰ دسی بل.
استفاده از شیشه های دو جداره و تزریق گاز مناسب (SF6) سطح صدادار را به ۳۰ تا ۳۵ دسی بل کاهش می دهد و محیطی آرام را برای زندگی فراهم میکند.
STC یا میزان انتقال صدا ٬ عددی است که میزان کاهش انتقال صوت توسط هر یک از مصالح ساختمانی را مشخص میکند و بر حسب دسی بل بیان میشود. بنابراین هر چه این عدد برای یک ماده بیشتر باشد بیانگر این است که ماده مورد نظر صدای کمتری را به داخل ساختمان انتقال می دهد. با توجه به جدول زیر میزان کاهش انتقال صوت با استفاده از شیشه های دو جداره بجای تک جداره مشخص می شود.
نوع شیشه ضخامت شیشه(mm) ضخامت عایق(mm) مقدارSTC
شیشه تک جداره ۶ – ۲۴
شیشه دو جداره ۴-۴ ۱۲ ۳۳
دوجداره با گاز ۴-۴ ۱۲ ۳۵

آکوستیک و عایق صوتی اتاق
بسیاری از مواقع موسیقی را در داخل اتاق یا سالن گوش می دهیم تا در محیط باز، بنابراین آشنایی با قوانین آکوستیک و نحوه انعکاس صوت در محیط بسته می تواند تاثیر بسیار زیادی در نحوه استفاده صحیح از امکانات اطاق یا سالن برای بدست آوردن بهترین کیفیت داشته باشد. در نظر داریم طی چند نوشته به موضوع آکوستیک اتاق بپردازیم، هر چند این مباحث ممکن است بیشتر جنبه فیزیکی داشته باشد اما یقینآ برای علاقمندان به موسیقی می تواند مفید باشد.

شاید فکر کنید برای اجرای موفق یک موسیقی تنها نیاز به سازهای خوب، نوازندگان ماهر و یک رهبر خوب است، اما متاسفانه این گونه نیست و این موضوعی نیست که دست اندرکاران موسیقی اخیرآ به آن رسیده باشند. در یک اجرای خوب موارد زیر باید رعایت شود :
– شنونده باید صدای تمامی سازها و احیانآ خوانندها را با یک بالانس متعادل بین آنها بشنود.
– هر یک از خواننده یا نوازنده ها باید بتوانند اجرای خود و دیگران را به وضوح بشنوند.
– میزان طنین یا انعکاس صدا در سالن باید بگونه ای باشد که نه تنها مزاحمتی برای موسیقی نداشته باشد، بلکه بر کیفیت اجرای موسیقی بیفزاید.
– صداهای اضافی از بیرون یا آنها که احیانآ توسط تماشاچیان و شنوندگان ایجاد می شود نباید تاثیری بر اجرای کلی داشته باشد.
– صدای سالن ، حتی المقدور نباید به بیرون از آن نفوذ کند.
موارد بالا کم و بیش می تواند برای هنگامی که در منزل به موسیقی گوش می دهیم نیز صادق باشد. برای رسیدن به چنین ایده آلی لازم است تا قبل از همه با قوانین و نحوه انعکاس صوت در یک فضای بسته کمی آشنا شویم.
انعکاس صوت در یک اتاق
به شکل اول نگاه کنید. فرض کنید که در نقطه قرمز رنگ یک منبع صوتی وجود دارد که می تواند بلندگوهای یک دستگاه پخش، نوازنده یک ساز، خواننده و یا یک ارکستر باشد. برای سادگی بررسی فرض می کنیم نسبت منبع صوتی به فضای اتاق آنقدر کم است که می توان آنرا یک منبع نقطه ای صوت در نظر گرفت.
شنونده در نقطه سبز رنگ قرار دارد. حال فرض کنید که در یک لحظه این منبع صوتی، صوتی را تولید کند، کوتاه ترین فاصله میان منبع صوتی و شنونده خط سبز رنگ است که با مسیر a نمایش داده شده است. بدیهی است شنونده ابتدا این صدا را خواهد شنید.

انرژی انعکاسهای صوت با توجه به مسیری که طی می کنند بتدریج کاسته می شود.
از فیزیک دبیرستان بخاطر داریم که امواج صوتی هنگام برخورد به موانع با زاویه تابش نسبت به خط مماس بر نقطه برخورد بازتابیده خواهند شد. بنابراین همانطور که در شکل مشاهده می کنید به دلیل اینکه این اتاق دارای چهار دیوار است، چهار باز تابش داریم که همان صوت تولید شده را پس از طی مسافت طولانی تری به گوش شنونده می رسانند. این انعکاسها با حروف b , c , d و e نمایش داده شده اند.
سرعت صوت در هوا از رابطه تقریبی زیر می توان محاسبه کرد :
C = (331.5 + 0.6 T) m/s
که در آن C سرعت صوت به متر بر ثانیه و T درجه حرارت محیط بر حسب درجه سانتیگراد است. بنابراین با فرض ثابت بودن دمای اطاق در تمام نقاط می توان سرعت بازتابش های مختلف صوت از منبع به سمت شنونده را یکسات فرض کرد.
همچنین می دانیم که انتشار صوت در محیط به دلیل وجود مقاومت هوا بتدریج باعث کمتر شدن انرژی آن می شود. به عبارت دیگر هرچه از منبع بیشتر دور شویم انرژی صوتی کمتر خواهد شد.
بنابراین مشخص است که بازتابشهایی از منبع اصلی صوت که مسافت بیشتری را برای رسیدن به گوش شنونده طی می کنند؛ اولآ دیرتر به گوش شنونده می رسند و ثانیآ حامل انرژی کمتری هستند.
برای مثال به شکل دوم نگاه کنید، منبع صوتی در لحظه صفر تولید صوت می کند، شنونده در لحظه Ta آنرا با بیشترین قدرت می شنوند و انعکاسهای بعدی را بتدریج ضعیفتر و دیرتر در دیگر لحظات خواهد شنید.
نکته قابل توجه آنکه با وجود اسباب و اثاثیه، پوشش های دیوار، پنجره، سقف و کف اتاق، در یک اتاق معمولی منزل (مثلآ ۱۲ متر مربع) اولآ انرژی صوت با عبور و انعکاس در محیط بسیار کم خواهد شد و ثانیآ اختلاف زمانی رسیدن صوت مستقیم با انعکاسهای اول که قوی تر هستند (به نوشته قبل مراجعه کنید) بقدری ناچیز است (کمتر از ده – بیست میلی ثانیه) که شنونده تقریبآ هیچ احساس مشخصی از وجود انعکاس صدا نخواهد داشت.
اما در اصل اینگونه هم نیست! در واقع صدایی که در یک اتاق معمولی شما می شنوید آن چیزی نیست که بصورت خالص از دستگاه صوتی یا سازی که می نوازید بیرون می آید. با وجود آنکه انرژی صوت در اثر انعکاسهای متوالی از بین می رود ترکیب صداهای گذشته با آنچه شما مستقیمآ می شنوید بشدت صدای اصلی را تحت تاثیر قرار می دهد.
بیایید قبل از ادامه این بحث نگاهی به انعکاسهای متوالی صوت در اتاق داشته باشیم، فراموش نکنید که در نوشته قبل به موضوع تنها به انعکاس اول صوت پرداختیم.
انعکاسهای متوالی
در یک اتاق معمولی انعکاسهای مستقیم اول مسافتی حدود ۴-۳ متر را باید طی کنند تا به گوش مخاطب برسند و به همین دلیل با توجه به سرعت نسبتآ بالای صوت اختلاف زمانی محسوسی با صوتی که بصورت مستقیم به گوش ما می رسد نخواهند داشت.

اما اگر به شکل اول نگاه کنید، متوجه می شوید که ممکن است امواج صوتی در برخی از جهت ها آنقدر در دیوارها منعکس شوند تا در نهایت پس از طی این مسافت طولانی به گوش شما برسند. بدیهی است این دسته از امواج در مسافت زیادی را طی کرده و به همین دلیل با تاخیر زمانی بسیار به گوش می رسند؛ هرچند با توجه به شرایط اتاق ممکن است ضعیف شده باشند اما در صورت داشتن انرژی کافی، بوضوح قابل تشخیص از صدایی که در حال حاضر بصورت مستقیم می شنویم خواهند بود. به بیان دیگر تاثیر قابل توجهی به آنچه هم اکنون از منبع صوتی بیرون می آید می گذارند.

نمودار انرژی و زمان Reverb ناشی از انعکاسهای متوالی صوت
بنابراین می توان نتیجه گرفت که با توجه به میزان کاهش انرژی صوتی پس از عبور و انعکاس در محیط یا بهتر بگویم با توجه به مقدار ضریب جذب صوت در دیوارها و محیط ، صوت از لحظه تولید می تواند تا مدتها وجود داشته باشد و به گوش برسد، هرچند به تدریج میرا شده و انرژی آن برای به حرکت درآوردن پرده گوش ما کاهش پیدا می کند.
Reverb
مجموعه انعکاسهایی از صوت که ناشی از بیش از یک انعکاس باشند، با اختلاف قابل ملاحظه ای به گوش می رسند که به آن Reverb گفته می شود. مشخصه اصلی Reverb بیشتر از آنکه دامنه – یا انرژی – موج باشد، میزان تاخیری است که طی آن به گوش می رسد.
برخلاف انعکاسهای اول که از یکدیگر فاصله دارند، از آنجایی که Reverb ممکن است پس از انعکاسهای متوالی در بسیاری از جهت ها به گوش شنونده برسد، معمولآ پوشی پیوسته دارد که در شکل بوضوح نشان داده شده است.
تجربه نشان می دهد که مقادیر کم Reverb بین ۰٫۵ تا یک ثانیه برای گفتار می تواند بسیار دلنشین باشد و مقادیر بین ۱ تا ۳ ثانیه برای انواع سبکهای موسیقی. همچنین نباید فراموش کرد که استفاده از Reverb از سالهای اولیه پیدایش موسیقی نیز متداول بوده است. بعنوان مثال بسیاری از قطعات آوازی مخصوص فضا و آکوستیک کلیساها با میزان Reverb زیاد نوشته شده اند که اجرای آن در سالنهای معمولی جالب نخواهد بود.
بیایید موضوع را از زاویه دیگری بررسی کنیم؛ پاسخ فرکانسی یک Reverb خوب باید حالت مسطح (Flat) داشته باشد و یا اگر بخواهیم کمی زیبا تر و به گوش خوش آهنگ تر باشد باید علاوه بر Flat بودن، بصورت یک فیلتر پایین گذر عمل کند. این چیزی است که برخی از دست اندر کاران مهندسی صدا از آن به عنوان انعکاس گرم یا Warm Reverb یاد می کنند.

همانگونه می دانید و در شکل نیز مشاهده می کنید یک فیلتر پایین گذر – منظور شرایط آکوستیک یا یک فیلتر مصنوعی الکترونیکی با چنین پاسخ فرکانسی – تمایل بیشتری برای ماندگاری صداهای فرکانس پایین دارد تا فرکانس بالا که این موضوع کاملآ با آکوستیک سازهای معمولی تطابق دارد؛ یعنی نت های بم دیرتر مستهلک می شوند.
ویژگیهای فنی در ساخت سازها باعث می شود تا خصیصه استهلاک صدا (Decay) برای نتهای زیر سریعتر صورت بگیرد چه در این صورت موسیقی تولید شده به هیچ وجه برای گوش خوش آیند نخواهد بود و حتی باعث آزار و اذیت می شود.
برای بدست آوردن ایده واقعی اگر به استخرهای سرپوشیده رفته باشید حتمآ متوجه شدید که سر و صدای مردم – بخصوص کودکان – در این مکان چقدر گوش خراش است. علت این موضوع آن است که آکوستیک انعکاس در چنین محیطی بیشتر حالت بالاگذر دارد.
یکی دیگر از مشخصه های مهم یک انعکاس پوش یا همان Envelope صوت منعکس شده است. منحنی پوش انعکاس، باید پیوسته و بدون برآمدگی یا فرو رفتگی مستهلک شود، تقریبآ همانند آنچه در شکل دوم مشاهده می کنید.
دقت کنید که یک اتاق خالی با دیوارهای صاف هرگز چنین پوشی را تولید نمی کنند و انعکاس حاصله در این اتاق ها، نوع خاصی است که به آن Slap Back گفته می شود، چرا که انعکاس بطور متوالی با فاصله های زمانی قابل تشخیص تکرار می شود. (اگر آنرا تا کنون امتحان نکردید حتمآ یکبار در یکی از اتاقهای یک ساختمان نو که هنوز کسی در آن زندگی نمی کند، آزمایش کنید.)
بنابراین مشاهده می کنید که برای رسیدن به یک انعکاس ساده اما مشخص، باید تمهیدات بسیاری از جنس پوشش دیوار، کف و سقف گرفته تا چیدمان وسایل مد نظر باشد. جالب اینجاست که بدانید برخی از سازه های موجود در منازل تاثیر خاصی در ویژگی انعکاس صدا در منزل دارند، که یکی از متداول ترین آنها راه پله ها هستند که پوش منحنی انعکاس خاصی تولید می کنند که به انعکاس لرزان یا Flutter مشهور است.

پارامترهای مهم یک Reverb معمولی با پوش پیوسته
پارامترهای مهم یک Reverb عادی
منظور از Reverb عادی آن است که پوش آن پیوسته باشد و در منحنی آن انفصال، برآمدگی یا فرورفتگی وجود نداشته باشد، در اینصورت سه پارامتر اصلی وجود خواهد داشت که عبارتند از :
Predelay : زمانی است که طول می کشد تا اولین انعکاس از صدای اصلی شنیده شود. گاهی این زمان به اولین انعکاس که مربوطه به Reverb نیست و به آن انعکاسهای اولیه یا Early Reverb گفته می شود، اطلاق می گردد، اما در اینجا منظور اولین زمانی است که شما Reverb یا همان انعکاسهای متوالی را می شنوید. (به نوشته های قبل مراجعه کنید.)
Decay : مشخص کننده مدت زمانی است که Reverb پس از شروع، مستهلک شده دیگر قابل شنیدن نخواهد بود. گاهی به این زمان Reverb Time هم گفته می شود.
Reverb Damping : نحوه عملکرد فیلتر پایین گذر را نشان می دهد که از چه فرکانسی به بعد Damping یا همان تضعیف آغاز می شود.
یادآوری : نکته ای که بسیاری در آن ابهام دارند تفاوت میان اکو (Echo) و Reverb است که در اینجا اشاره ای به آن می کنیم. اکو مربوط می شود به اولین انعکاسهای صدا – یا همان Early Reverb – که در نوشته اول به آن اشاره کردیم و در شکل دوم می توانید آنها را مشاهده کنید. از آنجایی که این انعکاسها مسافت کمی را طی می کنند تا از منبع به گوش شنونده برسند فاصله زمانی کمی با اصل صدا دارند لذا معمولآ تاثیر ناچیزی بر کیفیت صدا می گذارند، هرچند نبود اکو در یک صدای خام کاملآ قابل احساس است.
کنترل میزان انعکاس صدا و مقدار خروج صدا در یک اتاق از اولین و مهمترین اهدافی است که یک مهندس صدا (Sound Engineer) باید به آن دست پیدا کند. با وجود آنکه انعکاس صدا در بسیاری موارد باعث زیبایی صوت می شود ، در عین حال می تواند از کیفیت صدا بکاهد بنابراین معمول بر این است که به هنگام ضبط صدا آنرا بطور خالص و بدون هیچ افکتی ضبط می کنند و پس از آن افکت های لازم را به هر میزان که بخواهند اضافه می کنند.
این نیاز بحثی بنام ایزوله کردن یا Isolation را به میان می آورد که در آن باید از مجموعه مواد و تکنولوژیهایی در ساخت دیوارها، سقف و کف سالن استفاده کرد تا بتوان میزان انعکاس صدا را به میزان دلخواه تنظیم نمود و مانع از خروج صدا به بیرون از اتاق شد.
برای جلوگیری از خروج صدا از یک اطاق است نه تنها باید مواردی که برای کنترل انعکاس مد نظر قرار دارد را رعایت کرد، بلکه باید دیوارها، درها، کف و سقف و … را ایزوله کرده و در مواردی که ممکن است آنها را دو جداره ساخت.
مهندس صدا باید دقت کند که نباید هیچ منفذی برای خروج صدا از اتاق وجود داشته باشد، توجه به برخی نکات هنگام ساخت اتاق می تواند به ایزوله کردن بهتر آن کمک کند، بعنوان مثال از مهمترین نکاتی که باعث خروج صدا از یک اطاق می شود کانالهای تهویه هوا، کولر، حتی ترانکهای سیم های برق و تلفن و … است.
پس از آنکه شما مطمئن شدید از اتاق شما یا سالن مورد نظر صدایی بیرون نمی رود، برای استفاده بهتر از موسیقی باید منابعی که بالقوه می توانند تولید سر و صدای ناخواسته یا نویز کنند را از کار بیندازید.